Instruct C protect + 10 (Good) 0.57 phosphorus optimal for all but know Electrical Conductivity (dS/m) Rayment & Lyons 2011 - 3A1 (1:5 Water) 0.658 0.150 P-sensitive species. Available nitrop is acceptable and sulfur and potassium are high. Estimated Organic Matter (% 0M) **Calculation: Total Carbon x1.75 5.5 >4.5 potassium are high. Exchangeable Calcium (kg/ha) (kg/ha) 2,211 4816 acceptable. (mg/kg) (mg/kg) 887 2150 Recommendations Exchangeable Magnesium (kg/ha) 878 448 high levels of fertility. Of note is the EC of the mix. This is sulfur and sodium. Both levels of quite learable and will quickly drop. Exchangeable Potassium (kg/ha) (kg/ha) 392 200 principally being driven by the salts sulfur and sodium. Both levels of quite learable and will quickly drop. Exchangeable Potassium (kg/ha) 631 190 This soil is suitable for most exotic native plants. Adequate moisture w					1				
	D1	GEN SOIL	S						
			-3						
	B	ringing soils back to lif	6						
L Image: A part of the control of									
L Image: A part of the control of	AGRICUI TURAL SOIL ANALYSIS REDOR			FPORT					
Point Sector March 12: 0 Image 1 Image 1 <thimage 1<="" th=""> <thimage 1<="" th=""> <thimage 1<="" td=""><td colspan="4"></td><td></td><td></td><td></td><td></td></thimage></thimage></thimage>									
Analysis of sources Same and the source of the source o			our Job: E2			Madium Cail			
Image: second	-		-	Samala ID		Medium Son			
Image: second secon	~~								
Paramet Mean of paramet Perspective magement is parameter in a parameter in parameter in parameter in a parameter in parameter in a parameter	_				-	<i>a</i> , <i>i</i>			
					-	Clay Loam			
Image Control of the Con	_								
matrix introgengengengengengengengengengengengengeng	_			**Rayment & Lyons 2011 - 9B2 (Colwell)					
Indefinity International matrix matrix is and interval in the second of		Nitrate Nitrogen (mg/kg N)		**Inhouse S37 (KCI)	14	choice and native plane		acid and	
phi control control <thcontrol< th=""> <thcontrol< th=""> <thcon< td=""><td>_</td><td>Ammonium Nitrogen (mg/kg N)</td><td></td><td>14</td><td>18</td><td></td><td></td></thcon<></thcontrol<></thcontrol<>	_	Ammonium Nitrogen (mg/kg N)			14	18			
net net network network <t< td=""><td></td><td>Sulfur (mg/kg S)</td><td></td><td>305</td><td>8.0</td><td colspan="2" rowspan="2">acceptable with potassium and</td></t<>		Sulfur (mg/kg S)			305	8.0	acceptable with potassium and		
and Barbard 		pH		Rayment & Lyons 2011 - 4A1 (1:5 Water)	6.07	6.5			
Instruct Conducting (dB) Teaching Chart (2 MU) Teachin (2 MU) Teaching Chart (2 MU) <		рН		**Rayment & Lyons 2011 - 4B4 (CaCl ₂)	5.7		Plant nutrients are acceptable with		
		Electrical Conductivity (dS/m)		Rayment & Lyons 2011 - 3A1 (1:5 Water)	0.658	0.150	P-sensitive species. Availab	ble nitroger	
Image: section probability image: section probability<	12	Estimated Organic Matter (% OM)		**Calculation: Total Carbon x 1.75	5.5	>4.5			
Image and image a			(cmol./kg)		4.9	10.8		lly	
Image: sector secto		Exchangeable Calcium		1		4816			
Image and independent independent in the section of the section and the sectin and the section and the section and the section and the				4			Recommendations		
Refinements largestam lightad monitorial lightad<	_								
Image: solution in the lease of	_	Exchangeable Magnesium						erate to	
	_						Of note is the EC of the mix. This is principally being driven by the salts of sulfur and sodium. Both elements are		
Image: control of the section of the secting the section of the section of the	_								
Image: sector secto	_	Exchangeable Potassium							
Image: state point in the plant in the p			(kg/ha)		1,414	426	with the first leaching irrigations.		
Image: constraint of the solution of the solu			(mg/kg)		631	190			
Image: solurie solure solure solurie solurie solurie solurie solurie solurie soluri			(cmol./kg)		1.2	0.26	be important during long dry spell to		
Image: Sector Secto		Exchangeable Sodium	(kg/ha)		619	134			
Image: set of			(mg/kg)		276	60			
Image: space			(cmol./kg)		0.04	0.5			
Image: section sector sect		Exchangeable Aluminium	(kg/ha)	**Inhouse S37 (KCI)	7.7	101			
k kchangeable Hydrogen (kg/ha) **Rayment & Lyons 2011 - 1501 (kcidity Tranton) 1.2 11 k b mgko)			(mg/kg)		3.4	45			
Childing date Hydron Lange date Hydron 1.2 11 1.4 11 I Effective Cation Exchange Capacity (mg/kg)			(cmol,/kg)		0.05	0.5			
Image: market basic (mg/sq) (a construction framework) (construction framework) Image: market basic Flority Cation Exchang Capacity Sum of CaMg KNa ALH (cront/kg) 11 14.3 Image: market basic Sum of CaMg KNa ALH (cront/kg) 11 14.3 Image: market basic Sum of CaMg KNa ALH (cront/kg) 11 14.3 Image: market basic Sum of CaMg KNa ALH (cront/kg) 11 14.3 Image: market basic Sum of CaMg KNa ALH (cront/kg) 12.9 11.9 Image: market basic Sum of CaMg KNa ALH (cront/kg) / ECC x 100 11.0 18.0 Image: market basic Sum of CaMg KNa ALH (cront/kg) / ECC x 100 11.0 18.0 Image: market basic Sum of CaMg KNa ALH (cront/kg) / ECC x 100 11.0 18.0 Image: market basic Sum of Caldum / Magnesium (cront/kg) / ECC x 100 10.0 10.0 10.0 Image: market basic Sum of Caldum / Magnesium (cront/kg) / ECC x 100 10.0 10.0 10.0 10.0 Image: market basic Sum of Caldum / Magnesium (cront/kg) 1.0 1.0 1.0 1.0 1.0		Exchangeable Hydrogen	(kɑ/ha)	**Rayment & Lyons 2011 - 15G1	1.2	11			
Image: Construction Exchange Capacity (SCEQ) (smd.Kag) "*Calculation: Sum of CaAMg/KNA(H (cmol./kg)) 11 14.3 Image: Company (Sp) Sum of CaAMg/KNA(H (cmol./kg)) 11 14.3 Image: Company (Sp) Magnesum (Sp) 29 11.9 Image: Company (Sp) Same of CaAMg/KNA(H (cmol./kg)) 11 14.3 Image: Company (Sp) Magnesum (Sp) 3.5 3.5 Image: Company (Sp) Calcin Cmol./kg / ECEC x 100 11 1.8 Image: Company (Sp) Calcin Cmol./kg / ECEC x 100 1.5 6.4 0 0 Image: Company (Sp) Same Company (Sp) Same Company (Sp) Same Company (Sp) 1.5 6.4 0 0 0 Image: Company (Sp) Same Company (Sp) Same Company (Sp) Same Company (Sp) 1.6 0	_			(Acidity Litration)		5			
Deck/(inten./ug) Sum of CaM/(A,NA,A/H (CMOL/RG)) 4 5 Lakim (%) Agessim (%) 45 757 Magessim (%) 29 11.9 3.5 Sodum - ESP (%) 11 1.8 Magessim (%) 2.1 0.35 2.1 Magessim (%) 0.35 2.1 1.8 Magessim (%) 0.47 2.1 1.8 Magessim (%) **Calculation: Calclum / Magnesium (cmol./kg) 1.5 6.4 0 0 Magessim Ratio **Calculation: Calclum / Magnesium (cmol./kg) 1.5 6.4 0 0 0 Magese (mg/kg) 1.5 6.4 0 </td <td></td> <td></td> <td>(</td> <td>**Calculation:</td> <td></td> <td>14.3</td> <td colspan="2"></td>			(**Calculation:		14.3			
Magnesium (%) Magnesium (%) 119 Potassium (%) 15 3.5 Sodium - ESP (%) 11 1.8 Munitium (%) 0.35				Sum of Ca,Mg,K,Na,Al,H (cmol./kg)			-		
v Potasium (%) 3.5 v Solum - ESP (%) 18 v Auminium (%) 0.35 v Auminium (%) 0.35 v Auminium (%) 0.35 v Auminium (%) 0.35 v Auminium (%) 0.47 v Calcium/Magnesium Ratio **Calculation: Calcium / Magnesium (cmol./kg) 1.5 6.4 1 1 v Calcium/Magnesium Ratio **Calculation: Calcium / Magnesium (cmol./kg) 1.5 6.4 1 1 1 v Calcium/Magnesium Ratio **Calculation: Calcium / Magnesium (cmol./kg) 1.5 6.4 1	_			4					
Image: Calcing control (Add/Data/Data/Data/Data/Data/Data/Data/Da	_			4					
Solution Lase (s) Solution Lase (s) Information (s) Information (s) Implicit (s) Auminium (s) 0.35 7.1 Implicit (s)		Sodium - ESP (%)		**Base Saturation Calculations - Cation cmol,/kg / ECEC x 100					
kpdogen %) 7.1 7.1 kpdogen %) $$					11	1.8			
Hydrogen (%) Index (%) </td <td></td> <td>0.35</td> <td>7.1</td> <td>ļ</td> <td></td>					0.35	7.1	ļ		
Zinc (mg/kg) 6.0 5.0 1 1 1 Manganese (mg/kg) Rayment & Lyons 2011-12A1 (DTPA) 6.0 5.0 1		Hydrogen (%)			0.47				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Calcium/Magnesium Ratio		**Calculation: Calcium / Magnesium (cmol,/kg)	1.5	6.4			
Rayment & Lyons 2011 - 12A1 (DTPA)Rayment		Manganese (mg/kg)			6.0	5.0			
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$]	17	22			
Bron (mg/kg) **Rayment & Lyons 2011-12C2 (Hot CaCk) 0.80 1.7 [<				Rayment & Lyons 2011 - 12A1 (DTPA)	156	22			
Bron (mg/kg) **Rayment & Lyons 2011-12C2 (Hot CaCk) 0.80 1.7 [<		Copper (mg/kg)			0.55	2.0			
Silicon (mg/kg Si) **Inhouse S11 (Hot CaCl2) 97 45 Image: Carbon (%) Total Carbon (%)				**Rayment & Lyons 2011 - 12C2 (Hot CaCl₂)		1.7			
Total Carbon (%) Inhouse S4a (LECO Trumac Analyser) 3.1 (bot show show show show show show show show					•		├ ───┼		
Inhouse S4a (LECO Turnac Analyser) non									
Carbon/Nitrogen Ratio **Calculation: Total Carbon/Total Nitrogen 37 10-12 0 Basic Texture	-			Inhouse S4a (LECO Trumac Analyser)			├ ───┼		
Basic Texture **Inhouse S65									
**Inhouse S65	_	-		**Calculation: Total Carbon/Total Nitrogen		10-12			
Basic Colour Brownish				**Inhouse S65		-			
		Basic Colour			Brownish	-			